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Abstract In this paper, driven by applications in Behavioral Sciences, wherein the
speed of convergence matters considerably, we compare the speed of convergence of
two descent methods for functions that satisfy the well-known Kurdyka–Lojasiewicz
property in a quasi-metric space. This includes the extensions to a quasi-metric space
of both the primal and dual descentmethods.While the primal descentmethod requires
the current step to bemore or less half of the size of the previous step, the dual approach
considers more or less half of the previous decrease in the objective function to be
minimized. We provide applications to the famous “Tension systems approach” in
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1 Introduction

Driven by applications in Behavioral Sciences, wherein the speed of convergence
matters considerably, in this studywe compare the speed of convergence of twodescent
methods for functions that satisfy the well-known Kurdyka–Lojasiewicz property in a
quasi-metric space. This includes the extension to a quasi-metric space of the primal
descent method in Attouch and Bolte [1] and that of the dual descent method given
by Alaa and Pierre [2]. The two main conditions (1) and (2) given in this paper are
weaker than conditions H1 and H2 considered in Attouch et al. [3]. Our approach also
retrieves the exact proximal point method presented by Moreno et al. [4], as well as
the inexact proximal point method studied by Fuentes et al. [5].

Dual descent methods consider two types of steps. In [1], the current step must be
more or less half of the size of the previous step. In contrast, the dual approach in
[2] considers more or less half of the previous decrease in the objective function to
be minimized. Before comparing these dual algorithms, we need to extend them to
quasi-metric spaces. This is because in Behavioral Sciences (see Soubeyran [6–8] for
the introduction of quasi-distances in such areas), distances cannot represent specific
instances of costs of being able to change from one position to another. They are,
most of the time, quasi-distances, where the costs of being able to change from one
position to another are different from those of being able to change to go back to
the first position. We find that in a large set of cases, dual resolution converges faster
than primal resolution. This is caused by behavioral considerations, which imply the
different ways in which an agent can choose to reduce the discrepancy between where
he is initially (away from an optimal position) and where he wants to be in the near
or distal future (the goal, at an optimal position if possible). The primal resolution
chooses to reduce the discrepancy, defined as the quasi-distance between where the
agent is in the current period and where he wants to be (an optimal position) in the
near or distal future. The dual resolution chooses to reduce the discrepancy, defined
as the difference between his current dissatisfaction (a disutility, a negative feeling)
and his minimal dissatisfaction (tension-free state).

Let us be more explicit on the motivation of this paper. Lewis [9] is termed the
“father of tension systems” in Psychology. He advocates that life is a constant inter-
play between tension reduction and tension production phases. In tension reduction
phases, when agents have some goals in mind, they try to reduce the discrepancy
between where they are (the current status quo) and where they want to be (their
goals) in the near or distal future. These periods refer to goal-striving phases. When
they succeed in reaching their goals, tensions release. This is a temporary equilib-
rium phase. Then, in tension production phases, agents need new challenges. They
set new goals, creating a discrepancy between where they are in the current period
and where they want to be in a near or more distal future. This refers to goal-setting
phases. These powerful general ideas give rise to the (not formalized) famous theory
of self-regulation in Psychology (goal setting, goal striving, goal revision, goal disen-
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gagement; see Bandura [10], Carver and Scheier [11], Oettingen and Gollwitzer [12],
De Ridder and de Wit [13]).

This paper, being strongly mathematically oriented, will not consider tension pro-
duction processes for the following reason. The optimization community emphasizes
muchmore one side of self-regulation processes, the tension reduction processes. They
consider a given function to be minimized and a given discrepancy between where
an agent is and where he wants to be and try to find a position that minimizes this
discrepancy. Possible obstacles to reduce this discrepancy refer to constraints. This is
a traditional minimization problem with or without constraints. Mathematicians use
step-by-step algorithms to reach such minimization solutions (tension-free positions).
Such algorithms abound: descent methods, exact and inexact proximal algorithms,
Newton methods, local models of approximation like trust region methods and rejec-
tion processes like branch and bound algorithms.

A recent variational rationality (VR) approach of human behaviors (Soubeyran
[6–8]) offers a generalmodel for tension systems,where tension reduction phases inter-
playwith tension production phases. Thismodel unifies different approaches of human
behaviors in Psychology, Economics,Management Sciences, Political Sciences,Game
theory, Artificial Intelligence andMathematics. These include habit-routine formation
and breaking processes at the individual level and exploration–exploitation adaptive
learning dynamics in organizations. As a direct application, it helps to link the tension
reduction aspect of the self-regulation theory in Psychology with traditional optimiza-
tion problems in Mathematics. The first idea is that tension reduction is a progressive
process that cannot reduce discrepancy in one step. Then VR approach poses the fol-
lowing question: How to fill such gaps in an acceptable manner? Because of not being
able to do this in a single step, the agent will have to follow a transition defined as a
succession of acceptable single steps (change or stay). Then, he will accept to entering
into such a transition if acceptable.

The core of the VR approach is to define and modelize an acceptable single change
if it is sufficiently worthwhile. This is the case when the motivation to change instead
of stay is greater than the resistance to change instead of stay. Motivation to change is
the utility of advantages to change, and resistance to change is the disutility of incon-
veniences to change. Advantages to change refer to the difference between where the
agent wants to be or what he wants to have (an intention or its related payoff) and
where he is or what he has (the status quo) in the current period. They modelize how
tension production (creating a discrepancy) reduces tension, being a descent inMathe-
matics, bringing the agent closer to the minimum (tension-free state). Inconveniences
to change represent the difference between the costs of being able to change and being
able to stay. Under mild hypothesis, they are quasi-distances. Then, the VR approach
shows how, in a quasi-metric space, a primal descent method [1,14,15] is worthwhile
tension reduction process which reduces inconveniences to change. However, while
the dual descent method ([2] and this study) reduces the advantages to change from
where the agent is to where he wants to be, the tension-free position, this shows that
descent methods belong to tension reduction systems.

Note that in terms of our VR approach, our descent process is also dual to the
descent method considered in [3] because of the added reason that our stopping rule
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majorizes the norm of the subgradient by a function of advantages to change, while [3]
majorizes the norm of the subgradient by a function of the inconveniences to change.

The mathematical side of the VR approach proposed by Soubeyran [6,7] has been
further studied in a number of paperswith applications to behavioral sciences including
psychological modeling in quasi-metric space settings and minimal points, variational
principles andvariable preferences in set optimization; seeBao et al. [16,17]. To further
clarify how these developments are related to those presented in this paper, we provide,
among others, a short list of comparisons. The main point is that the variational ratio-
nality approach unifies the majority of algorithms and variational principles used in
optimization in terms of descent methods, approximate linear quadratic model-based
methods (trust region methods and other variants) and as tension reduction–tension
production systems in Psychology. It helps operate different broad classifications
among them:

(i) Weak resistance to change aspects (proximal algorithms; see Bento and
Soubeyran [14,15]) and strong resistance to change aspects (Ekeland theorem,
Caristi theorem and equivalent variational principles; see Bao et al. [16,17]);

(ii) Tension reduction processes with fixed ends (a given optimum for proximal algo-
rithms) and those with moving ends (variational traps and desires for Ekeland
and Caristi theorems);

(iii) Satisficing processes as tension reduction systems, where each satisficing step
refers to a sufficient epsilon reduction in quasi-distance or sufficient epsilon reduc-
tion in payoff;

(iv) Equivalent proximal formulations in terms of proximal payoffs (profit or utility,
minus costs of being able to change) and Ekeland-like worthwhile to change
conditions (descent condition, that is, descent conditions where advantages to
change, where advantages to change are higher than inconveniences to change);

(v) Tension reduction processes with variable and multidimensional preferences; see
Cruz and Allende [18] for a steepest-like descent method and Bao et al. [16,17]
for Ekeland theorem. In this case, all things seem to move, each period. Then,
how is it possible for something to stay in the end?

The organization of the paper is as follows. In Sect. 2, the basic definitions used in
the paper are presented. In Sect. 3, the main results are stated and proved. In Sect. 4,
we present a short VR structure. In Sect. 5, we compare the speed of convergence of
the two dual descent methods in a quasi-metric space. The conclusions are presented
in Sect. 6.

2 Preliminaries on Nonsmooth Analysis

In this section, some elements of nonsmooth analysis are presented; see, for instance,
[19,20]. Let us consider f : R

n → R ∪ {+∞}, a lower semicontinuous function. The
domain of f , denoted by dom f , is the subset of R

n on which f is finite valued. The
function f is said to be proper when dom f �= ∅. If T denotes a multivalued mapping
on R

n , the domain of T is the set of elements x ∈ R
n such that T (x) �= ∅.
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Definition 2.1 (i) The Fréchet subdifferential (also known as regular subdifferential)
of f at x ∈ R

n is defined by

∂̂ f (x) :=
⎧
⎨

⎩

{

x∗ ∈R
n : lim inf

y→x;y�=x
1

‖x−y‖ ( f (y)− f (x)−〈x∗, y−x〉) ≥ 0

}

, if x ∈dom f,

∅, if x /∈dom f.

(ii) The (Mordukhovich or limiting) subdifferential of f at x ∈ R
n is defined by

∂ f (x) :=
{ {

x∗ ∈ R
n : ∃xn → x, f (xn) → f (x), x∗

n ∈ ∂̂ f (xn); x∗
n → x∗

}
, if x ∈ dom f,

∅, if x /∈ dom f.

Note that ∂̂ f (x) ⊂ ∂ f (x). In the particular case where f is differentiable at x
(resp. continuously differentiable around x), then ∂̂ f (x) = {∇ f (x)} (resp. ∂ f (x) =
{∇ f (x)}). If f is a convex function, both subdifferentials ∂̂ f (x) and ∂ f (x) coincide
with the usual subdifferential for each x ∈ dom f .

Denote Graph ∂ f := {(x, v) ∈ R
n × R

n : v ∈ ∂ f (x)}. Checking the following
closedness property of ∂ f from the definition is straightforward. Let (xk, vk)k∈N ⊂
R
n × R

n such that (xk, vk) ∈ Graph ∂ f for all k ∈ N. If (xk, vk)k∈N converges to
(x, v), and f (xk) converges to f (x), then (x, v) ∈ Graph ∂ f ; see [3] for more details.
A necessary (but not sufficient) condition for x ∈ R

n to be a local minimum of f is
0 ∈ ∂ f (x). A point x ∈ R

n satisfying the last inclusion is said to be limiting critical
or simply critical.

3 Dual Descent Methods

In this section, we propose and study an inexact descent method whose full conver-
gence is assured for cost functions that satisfy the Kurdyka–Lojasiewicz property.

Definition 3.1 A mapping q : R
n × R

n → R+ is said to be a quasi-distance iff, for
all x, y, z ∈ R

n ,

(i) q(x, y) = q(y, x) = 0 if, only if, x = y;
(ii) q(x, y) ≤ q(x, z) + q(z, y).

Given x ∈ R
n and ε > 0 fixed, we denote by Bq(x, ε) the open ball, with respect to

the quasi-distance q, of center x and radius ε > 0, defined as follows: Bq(x, ε) =
{y ∈ R

n : q(x, y) < ε}. In particular, if q is the Euclidian distance, Bq(x, ε) will be
denoted by B(x, ε).

Throughout this paper, q represents a quasi-distance that satisfies the following
assumption:

Assumption 3.1 There exist β1, β2 ∈ R++ such that β1‖x− y‖ ≤ q(x, y) ≤ β2‖x−
y‖, x, y ∈ R

n .

In [4], the authors present some examples of quasi-distances that satisfy Assump-
tion 3.1.
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In the sequel, we consider sequences {xk} satisfying the following conditions (1),
(2), which, for convenience, we refer to as follows:

Method 3.1 Take x0 ∈ R
n, 0 < λ̄ ≤ λ̃ < +∞, and let a, b, be positive constants.

For each k = 0, 1, . . ., choose λk ∈ [λ̄, λ̃] and find
(
xk+1, wk+1

) ∈ R
n × R

n such
that

(a/λk) q
2
(
xk, xk+1

)
≤ f (xk)− f (xk+1), (worthwhile to change condition) (1)

wk+1 ∈ ∂ f (xk+1), bλk
∥
∥
∥wk+1

∥
∥
∥
2

≤ f (xk) − f (xk+1), (curvature condition on the payoff function f) (2)

where q : R
n × R

n → R+ represents a quasi-distance.

Remark 3.1 Note that any sequence generated by the proximal point methods pro-
posed in [1,4,21], as well as those complying with conditions (2.2) and (2.3) in [2],
satisfies conditions (1) and (2) particularly when quasi-distance is the Euclidean dis-
tance and f is a differentiable function. Moreover, (1) and (2) can be easily seen to
imply the following condition:

∃ wk+1 ∈ ∂ f
(
xk+1

)
: f

(
xk

)
− f

(
xk+1

)

≥ √
ab

∥
∥
∥wk+1

∥
∥
∥ q

(
xk, xk+1

)
, k = 0, 1, . . . , (3)

which is a natural extension to the quasi-metric setting of the discrete implicit angle
condition (1.6) in [2] considering the nondifferentiability of f (an explicit version
of this condition, in the differentiable case, was considered in Absil et al. [22]). It is
important to note that conditions (1) and (2) are less restrictive than conditions H1 and
H2 considered in [3], since (1) is equivalent to H1, and H1 and H2 together imply (2)
(in the particular case where q is a Euclidean distance).

We can assume, without loss of generality, that x0 ∈ dom f . Note that if {xk} is
a finite sequence, there exists k0 ∈ N such that f (xk+1) = f (xk), k ≥ k0. Hence,
(2) shows that wk+1 = 0, k ≥ k0. Then, {xk} terminates at a critical point. In view
of this, we can assume that {xk} is an infinite sequence. Unless stated otherwise, in
the remainder of this paper, we assume that f is a proper and lower semicontinuous
function bounded below and is continuous on dom f , and {xk} is an infinite sequence
satisfying the conditions of Method 3.1.

3.1 Convergence Analysis

In this section, assuming that f satisfies the Kurdyka–Lojasiewicz property, we show
full convergence of the sequence {xk} to a critical point. First, we present a partial
convergence result.

Proposition 3.1 The following statements hold.
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(i) The sequence { f (xk)} is strictly decreasing;
(ii)

∑+∞
k=0 q

2
(
xk, xk+1

)
< +∞;

(iii) limk→+∞ q
(
xk, xk+1

) = 0;
(iv) Each accumulation point of the sequence {xk}, if any, is a critical point of f .
Proof The proofs of items (i), (ii) and (iii) are simple verification. Let us deal with
item (iv). Suppose that x̄ ∈ R

n is an accumulation point of {xk}, and let {xk j } be a
subsequence converging to x̄ . It follows from (i) that xk ∈ dom f . Since f is a proper
and lower semicontinuous function, x̄ ∈ dom f , and as f is bounded below and is
continuous on dom f , we have from (i) that { f (xk)} converges to f (x̄). However, as
{xk} is a sequence that satisfies the conditions of Method 3.1, there exists a sequence
{wk+1} such that wk+1 ∈ ∂ f (xk+1), satisfying (2). In view of (2), {wk+1} converges
to zero, because 0 < λ̄ ≤ λk ≤ λ̃, k ∈ N, and { f (xk) − f (xk+1)} converges to zero.
As Graph ∂ f is closed, it follows that 0 ∈ ∂ f (x̄), which concludes the proof. ��

As in [1,3,4], our main convergence result is restricted to functions that satisfy
the Kurdyka–Lojasiewicz property. This was first introduced by Lojasiewicz [23]
to real analytic functions and extended by Kurdyka [24] to differentiable definable
functions in an o-minimal structure (for a detailed discussion on o-minimal structures,
see Dries andMiller [25]). For extensions of the Kurdyka–Lojasiewicz property, in the
Euclidian context, to the class of nonsmooth functions, see Bolte et al. [26], Bolte et al.
[27] and Attouch et al. [21]. For extensions of the Kurdyka–Lojasiewicz property to
functions defined on nonlinear spaces, see Kurdyka et al. [28], Lageman [29], Bolte et
al. [30], Bento et al. [31] andHosseini [32]. The next formal definition of theKurdyka–
Lojasiewicz property can be found in [21], where finding several examples and a good
discussion on important classes of functions that satisfy the mentioned inequality is
possible.

Definition 3.2 A proper and lower semicontinuous function f : R
n → R ∪ {+∞}

is said to have the Kurdyka–Lojasiewicz property at x̃ ∈ dom ∂ f iff there exist
η ∈]0,+∞], a neighborhoodU of x̃ , and continuous concave functionϕ : [0, η[→ R+
such that

ϕ(0) = 0, ϕ ∈ C1 (]0, η[) , ϕ′(s) > 0, s ∈]0, η[; (4)

ϕ′ ( f (x) − f (x̃)) dist (0, ∂ f (x)) ≥ 1, x ∈ U ∩ [ f (x̃) < f < f (x̃) + η], (5)

– dist(0, ∂ f (x)) := inf{‖v‖ : v ∈ ∂ f (x)},
– [η1 < f < η2] := {x ∈ R

n : η1 < f (x) < η2}, η1 < η2.

Remark 3.2 f is known to have the Kurdyka–Lojasiewicz property at any noncritical
point; see [21]. In [1] the authors considered that f has the Lojasiewicz property at
some point x̃ if there exist C > 0 and δ > 0 such that

| f (x) − f (x̃)|θ ≤ C‖w‖, x ∈ B(x̃, δ), w ∈ ∂ f (x). (6)

Note that if f has the Lojasiewicz property at some point x̃ , then it has the Kurdyka–
Lojasiewicz property at x̃ with
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η := δ/2, U := B(x̃, δ/2), ϕ(s) := (C/(1 − θ))s1−θ , θ ∈ [0, 1[. (7)

Indeed, assume that there exist C > 0 and δ > 0 satisfying (6). Taking η, U and ϕ as
defined in (7), we can easily see that ϕ satisfies all the requirements in (4) and there
holds

ϕ′ ( f (x) − f (x̃)) = C ( f (x) − f (x̃))−θ ≥ ‖w‖−1, w ∈ ∂ f (x),

x ∈ U ∩ [ f (x̃) < f < f (x̃) + η],

from which it follows (5) and, in particular, ϕ defined (7) satisfies all the conditions
of Definition 3.2.

Next, we present the main convergence result.

Theorem 3.1 Let f : R
n → R ∪ {+∞} be a function that satisfies the Kurdyka–

Lojasiewicz property at some x̃ ∈ R
n, and assume that Assumption 3.1 holds. Let

U ⊂ R
n be a neighborhood of x̃ , η ∈]0,+∞] and ϕ : [0, η[→ R+ the objects

appearing in Definition 3.2. Let ε > 0 be such that B(x̃, ε) ⊂ U, and take 0 < ρ <

εβ1, C1 =
(√

ab/2
)−1

and C2 =
√
2λ̃/

√
a

(√
2 − 1

)
satisfying

f (x̃) < f (x0) < f (x̃) + η, (8)

q
(
x̃, x0

)
+

((
λ̃/a

)1/2 + C2

)(
f (x0) − f (x̃)

)1/2 + C1ϕ
(
f (x0) − f (x̃)

)
< ρ.

(9)

xk ∈ Bq(x̃, ρ) ⇒ xk+1 ∈ Bq(x̃, εβ1) with f (xk+1) ≥ f (x̃), k = 0, 1, . . . .

(10)

Then, the sequence {xk} satisfies

xk ∈ Bq(x̃, ρ), k = 0, 1, 2, . . . , (11)
+∞∑

k=0

q
(
xk, xk+1

)
< +∞, (12)

and converges to a point x̄ . Moreover, x̄ is a critical point of f , f (x̄) = f (x̃) and
f (xk) → f (x̃).

Proof From now on, we can assume, without loss of generality, that f (x̃) = 0, since
we can change f to f − f (x̃). First, we need to prove that for each fixed k0 ∈ N with
xk0 ∈ Bq(x̃, ρ), we have

q
(
xk0 , xk0+1

)
≤ C1

(
ϕ

(
f (xk0)/2

)
− ϕ

(
f (xk0+1)/2

))

+C2

(
f (xk0)1/2 − f (xk0+1)1/2

)
. (13)
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Fix any k0 ∈ N with xk0 ∈ Bq(x̃, ρ). In view of (8) and (10), we have

0 ≤ f (xk0+1) ≤ f (xk0) ≤ f (x0) < η. (14)

Hence, the quantities ϕ
(
f (xk0)/2

)
and ϕ

(
f (xk0+1)/2

)
appearing in (13) make sense.

Now, we have two possibilities to consider:

(a) f
(
xk0+1

)
> f

(
xk0

)
/2;

(b) f
(
xk0+1

) ≤ f
(
xk0

)
/2.

Suppose that (a) holds. From concavity of the functionϕ in (4), we obtain the following
inequalities:

ϕ
(
f (xk0)/2

)
− ϕ

(
f (xk0+1)/2

)
≥ (1/2)ϕ′ ( f (xk0)/2

) (
f (xk0) − f (xk0+1)

)
,

(15)

ϕ′ ( f (xk0)/2
)

≥ ϕ′ ( f (xk0+1)
)

. (16)

Considering that (3) holds with k = k0, from (15) and (16), we have

ϕ
(
f (xk0)/2

)
− ϕ

(
f (xk0+1)/2

)

≥
(√

ab/2
)

ϕ′ ( f (xk0+1)
) ∥

∥
∥wk0+1

∥
∥
∥ q

(
xk0 , xk0+1

)
, (17)

where wk0+1 ∈ ∂ f
(
xk0+1

)
. In view of (1), we have

q
(
xk0 , xk0+1

)
≤

(
λ̃

a
f (xk0)

)1/2

. (18)

The inequality (18) and triangle inequality give us

q
(
x̃, xk0+1

)
≤ q

(
x̃, xk0

)
+ q

(
xk0 , xk0+1

)
≤

(
λ̃

a
f (xk0)

)1/2

+ q
(
x̃, xk0

)
.

As xk0 ∈ Bq(x̃, ρ), (10) implies xk0+1 ∈ Bq(x̃, εβ1). However, from Assumption 3.1
there exists β1 > 0 such that β1‖x̃ − xk0+1‖ ≤ q(x̃, xk0+1). This tells us that xk0+1 ∈
B(x̃, ε) ⊂ U . In view of (14),

xk0+1 ∈ U ∩ [0 < f < η].

Hence, as f satisfies theKurdyka–Lojasiewicz inequality at x̃ , we have 0 /∈ ∂ f (xk0+1).
Moreover, combining (5) with the definition of dist (0, ∂ f (x)), we obtain

ϕ′ ( f (xk0+1)
) ∥

∥
∥wk0+1

∥
∥
∥ ≥ ϕ′ ( f (xk0+1)

)
dist

(
0, ∂ f (xk0+1)

)
≥ 1.
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Hence, inequality (17) becomes

(√
ab/2

)−1 (
ϕ

(
f (xk0)/2

)
− ϕ

(
f (xk0+1)/2

))
≥ q

(
xk0 , xk0+1

)
. (19)

As C2

(
f
(
xk0

)1/2 − f
(
xk0+1

)1/2
)
is positive, inequality (13) follows immediately

from (19).
Now, let us assume that (b) holds. This fact gives us the following inequality:

f
(
xk0

)1/2 ≤ √
2/

(√
2 − 1

) (

f
(
xk0

)1/2 − f
(
xk0+1

)1/2
)

.

Hence, from (18),

q
(
xk0 , xk0+1

)
≤

√
2λ̃/

√
a

(√
2 − 1

) (

f
(
xk0

)1/2 − f
(
xk0+1

)1/2
)

.

BecauseC1
(
ϕ

(
f
(
xk0

)
/2

) − ϕ
(
f
(
xk0+1

)
/2

))
is positive, (13) follows immediately

from the last inequality, which completes the proof of the statement.
Let us prove (11) by induction on k. First, we are going to prove (11) for k = 0, 1.

From (9), we have that x0 ∈ B(x̃, ρ), and in view of (10), x1 ∈ B(x̃, εβ1) and
f (x1) ≥ 0. Using (1) with k = 0, we have

q2
(
x0, x1

)
≤ λ̃

a

(
f (x0) − f (x1)

)
≤ λ̃

a
f (x0). (20)

A combination of the last inequality and the triangle inequality gives us

q
(
x̃, x1

)
≤ q

(
x̃, x0

)
+ q

(
x0, x1

)
≤

(
λ̃

a
f (x0)

)1/2

+ q
(
x̃, x0

)
.

Combining the last inequality with (9) implies that x1 belongs to Bq(x̃, ρ). Now, take
j > 1, and assume that (11) holds for all k = 1, . . . , j − 1. In this case, (13) holds
for k = 1, . . . , j − 1. Then, we obtain

j−1∑

i=1

q
(
xi , xi+1

)
≤ C1

(
ϕ( f (x0)) − ϕ( f (x j ))

)
+ C2

(

f
(
x0

)1/2 − f
(
x j

)1/2
)

.

(21)

From the triangle inequality,

q
(
x̃, x j

)
≤

j−1∑

i=1

q
(
xi , xi+1

)
+ q

(
x0, x1

)
+ q

(
x̃, x0

)
.
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Thus, combining the last two inequalities with (20), we have

q
(
x̃, x j

)
≤ q

(
x̃, x0

)
+

(
λ̃

a
f (x0)

)1/2

+ C1ϕ( f (x0)) + C2 f
(
x0

)1/2
,

which, from (9), conclude the induction proof. Now, inequality (13) holds for all k ≥ 0.
Then, we have

N∑

j=0

q
(
xk, xk+1

)
≤ C1ϕ

(
f (x0)

)
+ C2 f

(
x0

)1/2
, N ≥ 0. (22)

Note that (12) follows immediately from (22). Now, combining the first inequality pre-
sented in Assumption 3.1 with (12), we conclude that {xk} is a Cauchy sequence and,
consequently, converges to some point x̄ . Now, it follows from vi) of Proposition 3.1,
that x̄ is a critical point of f . Lastly, let us prove f (x̄) = f (x̃) and f (xk) → f (x̃).
As { f (xk)} is strictly decreasing and f is bounded below, we have xk ∈ dom f for
all k, and { f (xk)} converges to f̄ = infk≥0 f (xk). From (10), we have f (xk+1) ≥ 0
for all k, which implies that f̄ ≥ 0. Suppose that f̄ > 0. As ϕ is a concave function
and xk ∈ U for all k, we obtain

ϕ′ ( f̄
) ∥
∥
∥wk

∥
∥
∥ ≥ ϕ′ ( f

(
xk

)) ∥
∥
∥wk

∥
∥
∥ ≥ 1, k = 0, 1, . . . ,

which is impossible, because wk → 0. Hence, f̄ = 0. As f is continuous on dom f ,
we have x̄ ∈ dom f and f (xk) → f (x̄). Therefore f (x̄) = f (x̃). ��

Assumptions (8), (9) and (10) were used in [3], in the particular case where q
was the Euclidean distance. Besides, the authors in [3] noted that if f satisfies the
Kurdyka–Lojasiewicz property at an accumulation point of the sequence {xk}, then
assumptions (8), (9) and (10) are dispensable, since they are naturally verified for some
xk0 as a new initial point instead of x0. Some papers have dealt with the case where
the Kurdyka–Lojasiewicz property is assumed directly at an accumulation point of the
sequence {xk}; see, for instance, [2,3,14]. In [21] the authors considered sequences that
naturally satisfied the conditions of the abstractmodel investigated in [3] and noted that
several standard assumptions automatically guarantee the boundedness of the sequence
{xk}, hence its convergence. Next, we present a convergence result following the idea
presented in [21].

Theorem 3.2 Assume that f satisfies the Kurdyka–Lojasiewicz property (5) at each
point in the domain of f , and suppose that Assumption 3.1 holds. Then

(i) either
∥
∥xk

∥
∥ tends to infinity;

(ii) or
{
q

(
xk, xk+1

)}
is l1, i. e.,

+∞∑

k=0

q
(
xk, xk+1

)
< +∞,

and as a consequence, {xk} converges to a critical point of f .
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Proof Assume that (i) does not happen, and let x̃ be a limit point of {xk} andU, ρ, η, ϕ

the associated objects, as defined in (5). Note that Proposition 3.1 implies that x̃ is
critical of f . As { f (xk)} is a nonincreasing sequence, we deduce that f (xk) converges
to f (x̃) and f (xk) ≥ f (x̃) for all k ≥ 0. Hence, the sequence

bk := q
(
x̃, xk

)
+

((
λ̃/a

)1/2 + C2

) (
f (xk) − f (x̃)

)1/2 + C1ϕ
(
f (xk) − f (x̃)

)

admits 0 as a cluster point; we obtain the existence of k0 ∈ N such that (8) and (9)
are fulfilled with xk0 as a new initial point. Now, let us prove Assumption (10). Take
xk ∈ Bq(x̃, ρ). If necessary, shrink η so that η < a/λ̃(εβ1 − ρ)2. From (1), we have

q
(
xk, xk+1

)
≤

√
λk

a

(
f (xk) − f (xk+1)

)
. (23)

Taking into account that

f (xk+1) − f (x̃) ≤ f (xk) − f (x̃) ≤ f (xk0) − f (x̃) < η, k ≥ k0,

we deduce from (23) that q(xk, xk+1) < εβ1 − ρ, k ≥ k0. Hence, from the triangle
inequality,

q(x̃, xk+1) ≤ q(x̃, xk) + q(xk, xk+1) < ρ + (εβ1 − ρ) = εβ1.

Therefore, Assumption (10) holds for all k ≥ k0. The conclusion is a consequence of
Theorem 3.1. ��

Remark 3.3 The stopping rule (2) limits the size of the norm of the subgradient as an
incentive to stop to change, compared to advantages to change f (xk) − f (xk+1).
Let us perform a comparison with the stopping rule H2 in [3], using a quasi-
distance instead of a distance, ‖wk+1‖ ≤ bq(xk, xk+1). It shows that the two
descent processes are dual in the following two senses. First, our stopping rule
majorizes the norm of the subgradient

∥
∥wk+1

∥
∥ by a function of advantages to change,

namely,
((

f (xk) − f (xk+1)
)
/bλk

)1/2
, while [3] majorizes the norm of the subgradi-

ent
∥
∥wk+1

∥
∥ by a function of inconveniences to change, namely b

(
q(xk, xk+1)2

)1/2 =
bq(xk, xk+1). Second, duality works also on f (xk+1) ≥ f (xk)/2 or the reverse,
instead of q(xk, xk+1) ≥ q(xk−1, xk)/2 or the reverse. This shows a great advantage
in using concepts of theVRapproach (see [6,7]) to further understand different descent
dynamics in a unifiedmanner. The dual descentmethodworks on advantages to change
to limit the norm of the gradient, while the primal descent method [3] approach works
on inconveniences to change.

To establish the rate of convergence of Method 3.1, we assume that ϕ is given as
in (7) and, for simplification, we consider that (C/(1 − θ)) = 1.
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Corollary 3.1 Under the assumptions of Theorem 3.1, there exists x̄ ∈ dom f such
that

q
(
xk, x̄

)
≤ β2

β1

(
C1

21−θ
f
(
xk

)1−θ + C2 f
(
xk

)1/2
)

, k ≥ 0.

Proof As we argued in Theorem 3.1, let us suppose that f (x̃) = 0. In view of
(11), xk ∈ Bq(x̃, ρ) for all k ≥ 0, which means (13) holds for all k ≥ 0. Using
inequality (13), considering that ϕ(s) = s1−θ and − f (xN+1) < 0, we have

q
(
xk, xN+1

)
≤

N∑

j=k

q
(
x j , x j+1

)
≤ C1

21−θ
f
(
xk

)1−θ +C2 f
(
xk

)1/2
, N ≥k≥0,

where the first inequality follows from the triangular inequality. As Assumption 3.1
holds, the last inequality becomes

β1

∥
∥
∥xk − xN+1

∥
∥
∥ ≤ C1

21−θ
f
(
xk

)1−θ + C2 f
(
xk

)1/2
, N ≥ k ≥ 0.

From Theorem 3.1, there exists x̄ ∈ dom f such that limk→+∞ xk = x̄ . Letting N
goes to infinity in the last inequality and using again Assumption 3.1, we obtain

β1

β2
q

(
xk, x̄

)
≤ C1

21−θ
f
(
xk

)1−θ + C2 f
(
xk

)1/2
, k ≥ 0,

which proves the desired result. ��
Now, we present an analysis of the rate of convergence.

Theorem 3.3 Under the assumptions of Theorem 3.1, there exists x̄ ∈ dom f satis-
fying the following statements:

(i) If θ ∈ [0, 1/2], there exists k̄ ∈ N such that

q
(
xk, x̄

)
≤ μQk, k ≥ k̄, (24)

with μ = f (x0)1/2β2/β1
(
C1/21−θ + C2

)
and Q = (

1/(1 + bλ̄/(1 − θ)2)
)1/2

;
(ii) If θ ∈]1/2, 1[, there exists C > 0 and k̄ ∈ N such that

q
(
xk, x̄

)
≤ C

⎛

⎝
k−1∑

j=k̄

λ j

⎞

⎠

(θ−1)/(2θ−1)

, k ≥ k̄. (25)

with C = β2/β1
(
C1/21−θ + C2

)
τ 1−2θ and τ = min

{
2−2θ (2θ − 1)b, (22θ−1

− 1)/λ̃
}
.
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Proof As we argued before, let us assume that f (x̃) = 0. From Theorem 3.1 we have
xk ∈ B(x̃, ρ) for all k ≥ 0 and f (xk) → 0. This implies that there exists k̄ ∈ N such
that

xk ∈ Bq(x̃, ρ), 0 ≤ f (xk) ≤ min{η, 1}, k ≥ k̄.

Considering that Bq(x̃, ρ) ⊂ B(x̃, ε), for k ≥ k̄, we have from (5),

(1 − θ) f
(
xk+1

)−θ ∥
∥
∥wk+1

∥
∥
∥ ≥ 1, k ≥ k̄. (26)

Now, let us prove (24). We estimate the rate of decay of the sequence { f (xk)}. From
(2), we have

f
(
xk

)
≥ f

(
xk+1

)
+ bλk

∥
∥
∥wk+1

∥
∥
∥
2
, k ≥ 0,

with wk+1 ∈ ∂ f
(
xk+1

)
. As λk > λ̄, (26), along with the last inequality, gives us

f
(
xk

)
≥ f

(
xk+1

)
+ bλ̄/(1 − θ)2 f

(
xk+1

)2θ
, k ≥ k̄. (27)

As 0 ≤ θ ≤ 1/2, and f (xk) ≤ 1, we obtain f
(
xk+1

)2θ ≥ f
(
xk+1

)
, k ≥ k̄. Hence,

(27) implies

f
(
xk+1

)
≤ 1/(1 + bλ̄/(1 − θ)2) f

(
xk

)
, k ≥ k̄.

Thus, it is easy to see that

f
(
xk

)
≤

(
1/(1 + bλ̄/(1 − θ)2)

)k
f
(
x0

)
, k ≥ k̄. (28)

However, from Corollary 3.1, there exists x̄ ∈ dom f such that

q
(
xk, x̄

)
≤ β2

β1

(
C1

21−θ
f
(
xk

)1−θ + C2 f
(
xk

)1/2
)

, k ≥ k̄. (29)

As f (xk)1−θ ≤ f (xk)1/2, k ≥ k̄, in view of (29), we have

q
(
xk, x̄

)
≤ β2

β1

(
C1

21−θ
+ C2

)

f
(
xk

)1/2
, k ≥ k̄. (30)

Combining (28) with (30), we obtain

q
(
xk, x̄

)
≤ f (x0)1/2

β2

β1

(
C1

21−θ
+ C2

) [(
1

1 + bλ̄/(1 − θ)2

)1/2
]k

, k ≥ k̄,
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which proves (24). Now, let us prove (25). For this purpose, we need to prove that

f
(
xk+1

)1−2θ − f
(
xk

)1−2θ ≥ τλk, k ≥ k̄, (31)

where τ = min
{
2−2θ (2θ − 1)b/(1 − θ)2, (22θ−1 − 1)/λ̃

}
. For k ≥ k̄ fixed, we have

two possibilities:

(a) f (xk+1) > f (xk)/2;
(b) f (xk+1) ≤ f (xk)/2.

Suppose that (a) holds. As the function [0,+∞) � t �→ t1−2θ is convex,

f
(
xk+1

)1−2θ − f
(
xk

)1−2θ ≥ (2θ − 1) f
(
xk

)−2θ (
f
(
xk

)
− f

(
xk+1

))
.

As θ ∈]1/2, 1[, 2−2θ f (xk+1)−2θ < f (xk)−2θ . Combining (2) with the last inequality,
we obtain

f
(
xk+1

)1−2θ − f
(
xk

)1−2θ ≥ 2−2θ (2θ − 1) bλk f
(
xk+1

)−2θ ∥
∥
∥wk+1

∥
∥
∥
2
, (32)

wherewk+1 ∈ ∂ f (xk+1). Taking into account that inequality (26) holds, (32) becomes:

f
(
xk+1

)1−2θ − f
(
xk

)1−2θ ≥ 2−2θ (2θ − 1) b/(1 − θ)2λk ≥ τλk .

However, if (b) holds, 21−2θ f (xk+1)1−2θ ≥ f (xk)1−2θ ; hence,

f
(
xk+1

)1−2θ − f
(
xk

)1−2θ ≥
(
22θ−1 − 1

)
f
(
xk

)1−2θ
.

As 1/2 < θ < 1 and f (xk) ≤ 1, we have f (xk)1−2θ ≥ 1. Then,

f
(
xk+1

)1−2θ − f
(
xk

)1−2θ ≥
(
22θ−1 − 1

)
≥ τ λ̃ ≥ τλk .

Hence, (31) holds. Take k ∈ N greater that k̄. Summing inequality (31) from k̄ to k−1,
we obtain

f
(
xk

)1−2θ − f
(
xk̄

)1−2θ =
k−1∑

j=k̄

(

f
(
x j+1

)1−2θ − f
(
x j

)1−2θ
)

≥ τ

k−1∑

j=k̄

λ j , k ≥ k̄.
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Taking into account that f (xk̄)1−2θ > 0 and 1 − 2θ < 0, last inequality becomes

f
(
xk

)
≤

⎛

⎝τ

k−1∑

j=k̄

λ j

⎞

⎠

1−2θ

, k ≥ k̄. (33)

As f (xk)1/2 ≤ f (xk)1−θ , we can combine (29) with (33) to obtain

q
(
xk, x̄

)
≤ β2

β1

(
C1

21−θ
+ C2

)

τ 1−2θ

⎛

⎝
k−1∑

j=k̄

λ j

⎞

⎠

(θ−1)/(2θ−1)

, k ≥ k̄,

and the proof is complete. ��

4 Variational Rationality and Discrepancy Reduction

In this section we justify: (i) Why these two descent methods are dual in terms of
Behavioral Sciences, and (ii) why we introduce quasi-distances.

The structure of the VR approach [6–8] defines each period a previous position x =
xk and current position y = xk+1, where a position is an activity, having something or
being somewhere. A change x = xk � y = xk+1 is worthwhile if the motivation to
change M(x, y) = U [A(x, y)] ∈ R+ is sufficiently high compared to the resistance
to change R(x, y) = D [I (x, y)] ∈ R+, that is if M(x, y) ≥ ξ R(x, y), ξ > 0,where,

(a) ξ refers to how worthwhile the change is: The higher ξ, the more worthwhile the
change is;

(b) U [A(x, y)] refers to the utility U [A] of advantages to change A(x, y);
(c) A(x, y) = f (x) − f (y) is the difference between the dissatisfaction f (x) ∈ R

of being again in position x and the possibly reduced dissatisfaction f (y) to be
in the new position y;

(d) M(x, y) is the positive tension generated by the discrepancy A(x, y) = f (x) −
f (y) ≥ 0;

(e) D [I (x, y)] refers to the disutility D [I ] of inconveniences to change I (x, y);
(f) I (x, y) = C(x, y) − C(x, x) ≥ 0 is the difference between costs C(x, y) ∈ R+

of being able to change from x to y and costs C(x, x) ∈ R+ of being able to stay
at x .

Our Method 3.1 is a specific instance of a worthwhile change, where U [A] = A,
D [I ] = I 2, I (x, y) = q(x, y), ξk+1 = a/λk > 0.Condition (1) readsM(xk, xk+1) =
f (xk) − f (xk+1) ≥ ξk+1q2(xk, xk+1) = ξk+1R(xk, xk+1). It means that the change
xk � xk+1 is worthwhile. Then, our dual descent must be worthwhile. Condition (2)
gives a condition on the curvature of the unsatisfaction function at xk+1.

Costs of being able to stay are supposed to be zero, C(x, x) = 0 for all x ∈ X .
Costs of being able to change, C(x, y) = q(x, y), are quasi-distances (see [8]) for a
precise justification. They are not symmetric. The costs of being able to change from
x to y are different from those of being able to change from y to x .
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The primal descent method [1,14] considers a descent greater than half of the
previous distance and quasi-distance, q(xk, xk+1) < (1/2)q(xk−1, xk), while the
dual descent method ([2] and this paper) considers a descent greater than half of the
previous discrepancy f (xk+1) > (1/2) f (xk).

5 Comparison of the Dual Speeds of Convergence

In this last section, we compare the speed of convergence of our dual descent method
(this paper, Theorem 3.3) with the speed of convergence of the primal descent method
[14, Theorem 3.12].

MAIN RESULT. The primal and dual descent methods have the same rate of
convergence when 0 < θ < 1/2. In the opposite case, where 1/2 < θ < 1, the dual
descent method converges faster than the primal descent methods if λk ≥ λ > 1 for
k ≥ k∗.

Proof There are two cases,

Case I 0 < θ < 1/2. Then, the two methods give the same rate of convergence
q(xk, x) ≤ cQk for k ≥ k0.

Case II 1/2 < θ < 1. Let σ = (1 − θ)/(2θ − 1) > 0 and L(k) = ∑k−1
j=k

λ j . Then,

– the primal descent method gives qP (xk, x) ≤ CPk−σ ,

– the dual descent method gives qD(xk, x) ≤ CDL(k)−σ .

This shows that the quasi-distance from the current position xk to the limit position
x decreases more in the dual descent method than in the primal descent method if
L(k)−σ < k−σ , that is if L(k) = ∑k−1

j=k
λ j > k. This is the case when λ j ≥ λ > 1

for all j = k, . . . , k − 1. In this situation, (k − 1 − k)λ > k is satisfied if k > k∗ =
(λ/(λ − 1))(1 + k). ��

Theorem 3.3 gives us an algebraic interpretation of the speed of convergence of
the sequence that satisfies the conditions of Method 3.1. Let us define the speed of
convergence as proportional to the size of the quasi-distance between the current point
xk and critical point x̄ , q(xk, x̄). Now, let us look more closely to analyze conditions
(24) and (25) accurately from the viewpoint of the recent VR approach; see Soubeyran
[6–8]. In item (i), expressions of the constants μ and Q in (24) show that μ decreases
when a and b increase, while Q decreases when only b increases. The speed of
convergence increases in three situations:

(i) First, if a increases, i.e., when being worthwhile to change requires more advan-
tages to change compared to inconveniences to change (see inequality (1));

(ii) Second, if b increases, because a higher b decreases both μ and Q, it decreases
Qk even more. A higher b requires, for the same advantage to change f (xk) −
f (xk+1), to get a lower marginal advantage to change. This pushes the agent
to stop changing earlier, each period, because, marginally (making one more
incremental very small unit change), he will have a lower marginal advantage
to change, despite being given the same advantage to change. Then, the size of
each step will probably decrease. The effect of a higher b seems to be the most
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important for increase in the speed of convergence. Then, the stopping rule, which
determines the size of each step, plays a major role in the speed of convergence;

(iii) Third, the lower the f (x0), the higher is the speed of convergence (the time spent
to converge). This is very intuitive, because the gap to fill, f (x0) − inf f ≥ 0, is
smaller. Similarly, the expression of C in (25) shows us that C will decrease if a
or b increases. In both cases, the same comments as above can be applied.

6 Conclusions

In this paper, we present an abstract descent method in the quasi-metric setting, where
the descent condition works on payoffs (half the payoff, each time). The main conver-
gence result is restricted to functions that satisfy the Kurdyka–Lojasiewicz property.
An analysis of the rate of convergence is also presented. We also compare the rate of
convergence of the primal and dual descent methods, showing that the dual descent
method can converge faster in a large domain of cases. The motivation comes from
Psychology, where tension reduction processes (goal striving) play a major role. In
future research, we intend to investigate our descent method in more general contexts,
for example, to the Riemannian context. It is worth noting that in recent years there has
been an increasing number of studies proposing extensions of concepts and techniques,
as well as methods of mathematical programming pertaining to the linear setting to
the Riemannian context. Particularly, Li et al. [33] extended the notion of weak sharp
minima and its characterization to the Riemannian setting. As in the linear setting,
in the Riemannian context this notion is very instrumental for descent methods. In
fact, introducing these notions has been motivated by numerical applications; see, for
instance, Bento and Cruz Neto [34]. We foresee further progress in this topic in the
near future.
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